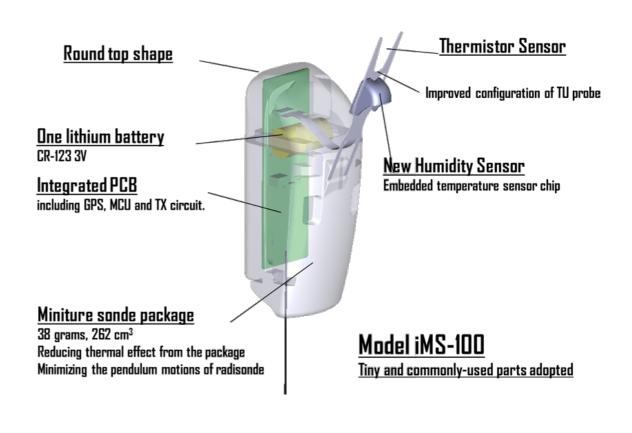
Radiosonde Tracking

ラジオソンデ追跡

A presentation to TIARA February 20th, 2022

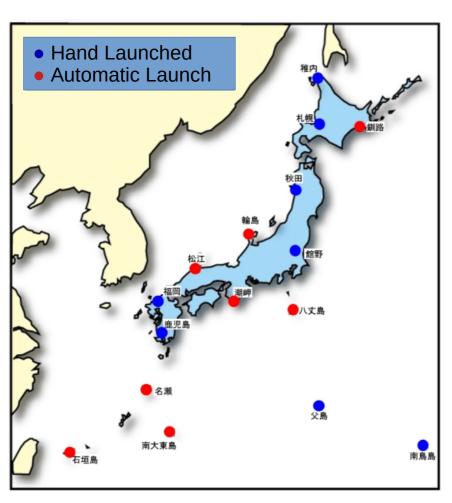

Genesis

Jim presented his TinyGS tracking device in an earlier TIARA meeting. Under his guidance, I tried this, and was later contacted along with Jim and others in the TinyGS community with a request to set up weather balloon tracking stations in Japan.

Hiroshi Iwamoto (JH4XSY) set up the first site in Japan, and shortly thereafter, I set up the second.

What is Radiosonde

"A radiosonde is a battery-powered telemetry instrument carried into the atmosphere usually by a weather balloon that measures various atmospheric parameters and transmits them by radio to a ground receiver."


Early History

In 1924, Colonel William Blaire in the U.S. Signal Corps did the first primitive experiments with weather measurements from balloon, making use of the temperature dependence of radio circuits. The first true radiosonde that sent precise encoded telemetry from weather sensors was invented in France by Robert Bureau. Bureau coined the name "radiosonde" and flew the first instrument on January 7, 1929. Developed independently a year later, Pavel Molchanov flew a radiosonde on January 30, 1930. Molchanov's design became a popular standard because of its simplicity and because it converted sensor readings to Morse code, making it easy to use without special equipment or training.

Japan Launches

18 meteorological observatories and weather stations, the Air Self-Defense Force, the Ground Self-Defense Force, universities and other research institutes, and the Japan Weather Association conduct observations. Meteorological observatories and weather stations usually fly twice a day (8:30 a.m. and 8:30 p.m.). When a typhoon is approaching, they may fly up to four times a day. The Japan Coast Guard flies them from ships, but they can also be dropped from aircraft.

Japan Meteorological Observatory Launch Sites

Name, Location (North to South)	Latitude	Longitude
Wakkanai, Hokkaido	45°24.9′	141°40.7′
Sapporo, Hokkaido	43°03.6′	141°19.7'
Kushiro, Hokkaido	42°57.2'	144°26.3"
Akita, Akita	39°43.1′	140°06.0′
Wajimai, Ishikawa	37°23.5′	136°53.7'
Tateno, Ibaraki	36°03.5′	140°07.5′
Hachijojima, Tokyo	33°07.3′	139°46.7'
Matsue, Shimane	35°27.5′	133°04.0′
Shionomisaki, Wakayama	33°27.1′	135°45.7'
Fukuoka, Fukuoka	33°35.0′	130°23.0′
Kagoshima, Kagoshima	31°33.3′	130°32.9′
Naze, Kagoshima	28°23.6′	129°33.2'
Ishigaki, Okinawa	24°20.2′	124°09.8′
Minami Daito, Okinawa	25°49.8′	131°13.7'
Chichijima, Tokyo	27°05.7'	142°11.1′
Minamitorishima, Tokyo	24°17.4′	153°59.0'
Showa Station, Antarctica $[not shown on map :-)]$	-69°00.3′	39°34.7

Sample Devices

iMS-100, RS-11G, and RS41-SG

On top are temperature and humidity guages.

Internal: GPS, transmitter, signal conversion board, battery, etc.

Observed Launches

Sites:

Matsue, Shionomisaki, Tateno, non-observatory

Frequencies:

404.0-404.5,405.3,405.6,405.7MHz

Models:

DFM17, iMS-100, LMS6, RS41, RS41-SG

Setup:

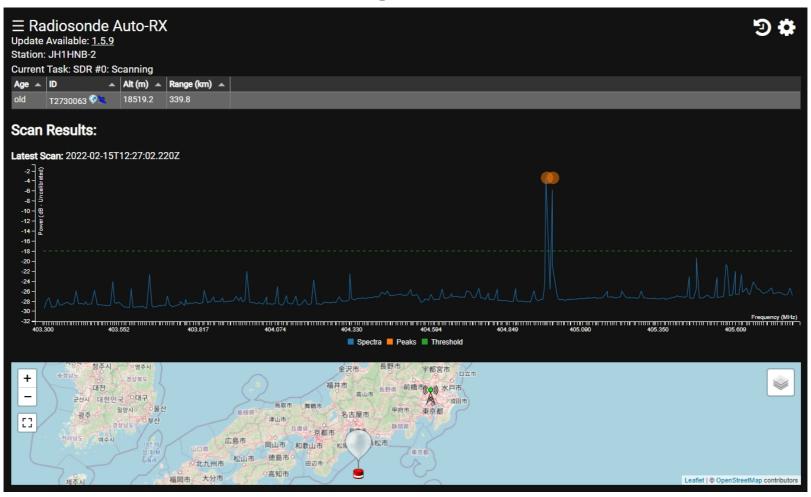
A: Raspberry Pi 3 B+, 1000 yen used no name DVB-T+FM+DAB 820T2

B: TTGO LoRa32 V2.1-1.6 Version 433

Software: radiosonde auto rx

Recommended

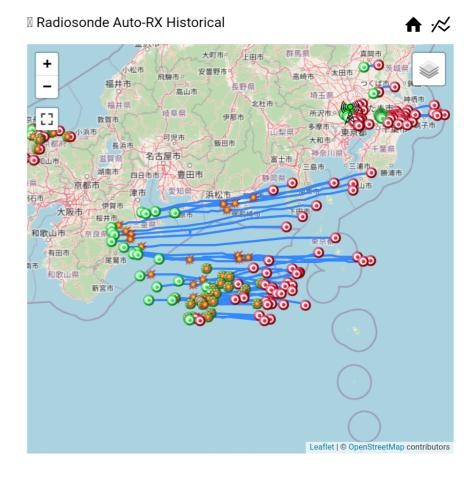
- Widest mode support
- Raspi 3 or 4 + RTL-SDR + Antenna
- Load software and go
- RTL-SDR should have temperature compensated oscillator (TCXO)
- WiFi or Ethernet

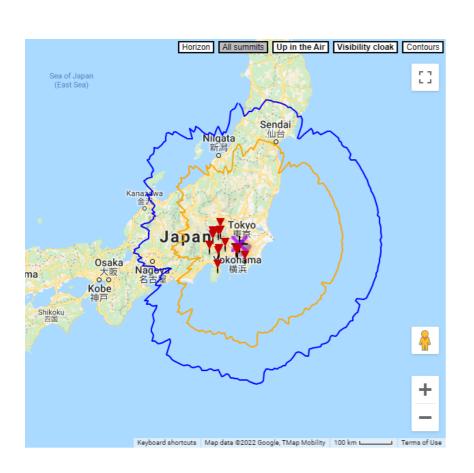


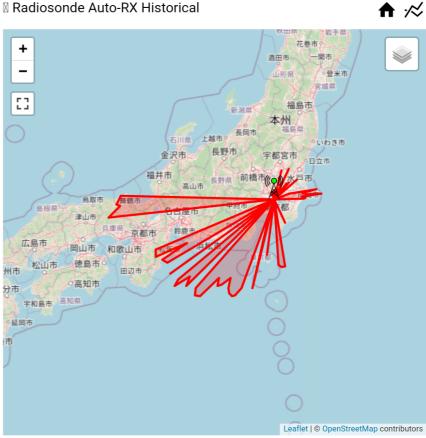
Radiosonde Support Matrix

Manufacturer	Model	Position	Temperature	Humidity	Pressure	XDATA
Vaisala	RS92-SGP/NGP	✓	✓	✓	✓	✓
Vaisala	RS41- SG/SGP/SGM	✓	✓	✓	✓ (for -SGP)	✓
Graw	DFM06/09/17	✓	✓	×	×	×
Meteomodem	M10	✓	✓	✓	Not Sent	×
Meteomodem	M20	~	•	✓	✓ (For some models)	×
Intermet Systems	iMet-4	✓	✓	✓	Not Sent	×
Intermet Systems	iMet-54	~	✓	✓	Not Sent	×
Lockheed Martin	LMS6-400/1680	~	×	×	×	Not Sent
Meisei	iMS-100	~	×	×	×	Not Sent
Meteo-Radiy	MRZ-H1 (400 MHz)	✓	✓	✓	×	Not Sent

rdzTTGOSonde


Software: Spectrum Scan


Sample Screen Log & Paths


Date _	Type 🔺	Serial 🔺	Count 🔺	Last H ▲	Last R 🔺	Max R ▲
2022-01-28T12:17:34Z	RS41	T2720737	49	14314 m	340 km	345 km
2022-01-28T12:58:32Z	RS41	T4030229	52	19774 m	423 km	427 km
2022-01-28T14:03:18Z	DFM17	20062777	478	7024 m	254 km	273 km
2022-01-28T16:27:53Z	DFM17	20062597	2668	5351 m	240 km	354 km
2022-01-28T19:53:36Z	DFM17	20062773	879	5083 m	233 km	265 km
2022-01-28T22:49:59Z	DFM17	21039322	1402	4404 m	212 km	277 km
2022-01-29T01:12:33Z	RS41	T3140142	52	16453 m	380 km	384 km
2022-01-29T01:19:58Z	RS41	T2720767	241	9791 m	262 km	277 km
2022-01-29T01:31:29Z	LMS6-403	8178073	2282	3923 m	215 km	320 km
2022-01-29T04:26:01Z	LMS6-403	8179725	4921	2942 m	187 km	340 km
2022-01-29T06:07:17Z	iMS-100	IMS100-11	865	8535 m	119 km	119 km
2022-01-29T07:29:18Z	LMS6-403	8142745	3678	3819 m	187 km	344 km
2022-01-29T10:26:59Z	LMS6-403	8179797	3728	2502 m	180 km	339 km
2022-01-29T12:09:26Z	RS41	T2730054	787	7762 m	278 km	342 km
2022-01-29T12:42:37Z	RS41	T4050098	228	18606 m	395 km	407 km
2022-01-29T13:17:41Z	DFM17	21039614	3221	1727 m	154 km	352 km
2022-01-29T15:08:09Z	iMS-100	IMS100-11	543	6987 m	90 km	90 km
2022-01-29T16:12:18Z	DFM17	21039143	3072	1685 m	163 km	363 km

Theoretical Range @ 5000m, 10000m vs. Coverage, Ebisu condo 9F

Left: http://www.heywhatsthat.com/ new panorama -> input long, lat and title, [submit request] -> up in the air -> input altitudes Right: via home lan interface into device

Downloadable Logs

	A	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	T
1	timestamp	serial	frame	lat	lon	alt	vel v	vel h	heading	temp	humidity	pressure	type	freg mhz	snr	f error hz	sats	batt v	burst timer	aux data
2	2022-01-28T12:17:50.000Z	T2720737	4305	33.26612	137.28816	15374.2	-5.1	58.5	89	-273	-1	-1	RS41	405.6	7.2	-7687	8	2.6	-1	1 -1
3	2022-01-28T12:17:51.000Z	T2720737	4306	33.26612	137.28879	15369.1	-5.4	58.7	89.4	-273	-1	-1	RS41	405.6	8.9	-7687	10	2.6	-1	1 -1
4	2022-01-28T12:17:52.000Z	T2720737	4307	33.26613	137.28942	15363.7	-5.2	59.5	89.5	-273	-1	-1	RS41	405.6	8.9	-7687	10	2.6	-1	1 -1
5	2022-01-28T12:17:53.000Z	T2720737	4308	33.26613	137.29006	15358.5	-5.3	59.3	89.8	-273	-1	-1	RS41	405.6	7.9	-7687	10	2.7	-1	1 -1
6	2022-01-28T12:17:55.000Z	T2720737	4310	33.26613	137.29133	15348	-5.2	59.4	89.6	-273	-1	-1	RS41	405.6	6.8	-7687	10	2.6	-1	1 -1
7	2022-01-28T12:17:57.000Z	T2720737	4312	33.26614	137.29259	15337.6	-4.9	59	89.8	-273	-1	-1	RS41	405.6	7.8	-7687	10	2.6	-1	1 -1
8	2022-01-28T12:17:58.000Z	T2720737	4313	33.26614	137.29322	15332.8	-4.5	58.7	89.6	-273	-1	-1	RS41	405.6	7.8	-7687	10	2.7	-1	1 -1
9	2022-01-28T12:18:00.000Z	T2720737	4315	33.26614	137.29449	15324.2	-3.9	59.7	89.6	-273	-1	-1	RS41	405.6	7.8	-7687	9	2.6	-1	1 -1
10	2022-01-28T12:18:03.000Z	T2720737	4318	33.26613	137.2964	15310.5	-4.5	58.9	90.5	-273	-1	-1	RS41-SG	405.6	7.2	-7687	10	2.7	-1	1 -1
11	2022-01-28T12:18:04.000Z	T2720737	4319	33.26613	137.29703	15306.1	-4.4	59.3	90.5	-273	-1	-1	RS41-SG	405.6	7.8	-7687	10	2.7	-1	1 -1
12	2022-01-28T12:18:05.000Z	T2720737	4320	33.26612	137.29766	15301.8	-4.5	59.3	89.7	-273	-1	-1	RS41-SG	405.6	8.2	-7687	10	2.6	-1	1 -1
13	2022-01-28T12:18:06.000Z	T2720737	4321	33.26613	137.2983	15297.5	-4.6	59.5	89.9	-273	-1	-1	RS41-SG	405.6	8.2	-7687	10			
14	2022-01-28T12:18:11.000Z	T2720737	4326	33.26616	137.30155	15274.3	-4.3	60.3	89.1		-1	-1	RS41-SG	405.6	7.6	-7687	9			
15	2022-01-28T12:18:12.000Z	T2720737	4327	33.26617	137.30219	15270.3	-3.9		89.8		-1	-1	RS41-SG	405.6		-7687				1 -1
	2022-01-28T12:18:13.000Z		4328		137.30284		-3.8				-1		RS41-SG	405.6		-7687				
17	2022-01-28T12:18:14.000Z	T2720737	4329	33.26618	137.30349	15262.6	-4	60.7	89.1	-273	-1	-1	RS41-SG	405.6	7.9	-7687	10			
18	2022-01-28T12:18:15.000Z	T2720737	4330	33.26618	137.30414	15258.5	-4.2	60.7			-1	-1	RS41-SG	405.6	8	-7687	10			
19	2022-01-28T12:18:25.000Z	T2720737	4340	33.26601	137.31066	15211.7	-4.6				-1	-1	RS41-SG	405.6		-7687				_
20	2022-01-28T12:19:08.000Z		4383				-7.5	58.3			-1		RS41-SG	405.6		-7687	10			_
21	2022-01-28T12:19:13.000Z		4388		137.34129		-6				-1		RS41-SG	405.6		-7687	10			
22	2022-01-28T12:19:15.000Z		4390		137.34257		-7.3				-1		RS41-SG	405.6	_	-7687	10			
23	2022-01-28T12:19:16.000Z		4391		137.34322		-9.1				-1		RS41-SG	405.6		-7687	_			
24	2022-01-28T12:19:21.000Z	T2720737	4396		137.34642		-8.5	60.3			-1		RS41-SG	405.6		-7687				
25	2022-01-28T12:19:22.000Z		4397		137.34706		-8				-1		RS41-SG	405.6	_	-7687	_			_
26	2022-01-28T12:19:26.000Z		4401								-1		RS41-SG	405.6		-7687				
27	2022-01-28T12:19:27.000Z				137.35023						-1		RS41-SG	405.6		-7687	9			
_	2022-01-28T12:19:30.000Z		4405		137.35217						-1		RS41-SG	405.6		-7687	_			
29	2022-01-28T12:19:37.000Z		4412		137.35678						-1		RS41-SG	405.6		-7687				
30	2022-01-28T12:19:39.000Z				137.35816		-8.2				-1		RS41-SG	405.6		-7687				
31	2022-01-28T12:19:47.000Z		4422		137.36352		-7.8				-1		RS41-SG	405.6		-7687				
32	2022-01-28T12:19:48.000Z		4423		137.36421		-7.1			-273	-1		RS41-SG	405.6		-7687				
33	2022-01-28T12:19:49.000Z		4424				-6.9				-1		RS41-SG	405.6		-7687	_			
34	2022-01-28T12:19:53.000Z		4428		137.36764		-7.2				-1		RS41-SG	405.6		-7687	_			
35	2022-01-28T12:19:54.000Z		4429		137.36833		-7.7				-1		RS41-SG	405.6		-7687				
36	2022-01-28T12:19:55.000Z		4430		137.36902		-7.4				-1		RS41-SG	405.6		-7687				
	2022-01-28T12:19:56.000Z		4431		137.36972		-7.4				-1		RS41-SG	405.6		-7687				
38	2022-01-28T12:20:00.000Z		4435		137.37254		-6.6	_			-1		RS41-SG	405.6		-7687				
39	2022-01-28T12:20:02.000Z		4437		137.37397		-7.4			-273	-1		RS41-SG	405.6	_	-7687	_		08:29:38	-1
40	2022-01-28T12:20:04.000Z	12720737	4439	33.25833	137.37538	14487.8	-6.7	69.3	107.4	-273	-1	-1	RS41-SG	405.6	8.6	-7687	9	2.7	08:29:38	-1

Software: rdzTTGOsonde

Inexpensive Option

- Widest mode support
- TTGO LoRa ESP32 (appx. 2,500 yen incl. shipping from AliExpress) + Antenna
- Load software and go
- WiFi only

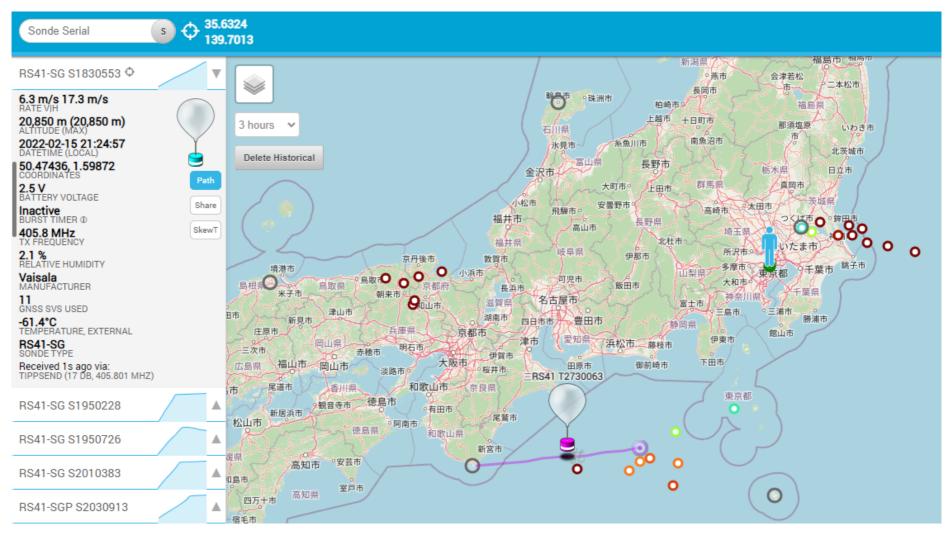
Radiosonde Support Matrix

Manufacturer	Model	Position	Temperature	Humidity	Pressure
Vaisala	RS92-SGP	✓	✓	×	×
Vaisala	RS41-SG/SGP/SGM	✓	✓	✓	✓ (for -SGP)
Graw	DFM06/09/17	✓	✓	×	×
Meteomodem	M10	✓	✓	✓	Not Sent
Meteomodem	M20	✓	×	×	Not Sent
Meteo-Radiy	MP3-H1 (MRZ-H1)	✓	×	×	×

Only covers two of the 5 models so far observed in Japan.

https://github.com/dl9rdz/rdz_ttgo_sonde rdzTTGOSonde

Software: rdzTTGOsonde



Hooking this up to my one decent 433MHz antenna (Diamond SG7700), I had initial impressive receiption of launches from Matsue, Shionomisaki, and Tateno right off the bat. Best 2,500 yen spent on radio in recent memory. After Auto RX inherited the antenna, it has suffered from poor reception. Worthwhile if you can use with a good antenna from a site with good eye-of-sight range.

Sondehub - Data Aggregation

Sondehub - Historical

Closing

It has been fun playing with this. Please give it a try, especially if you already have the components in your shack.

If you liked this, for other similar data exchange systems (air, marine, satellite, etc.) see:

https://www.reddit.com/r/RTLSDR/comments/sf9m0y/this_is_a_master_list_of_crowdsourced_data/

I also participate in FlightAware, and TinyGS and can recommend these too.